ЭЛЕКТРОПРИВОДЫ

ПРЕИМУЩЕСТВА

- планетарная коробка передач
- высокая точность установки
- возможность дополнения электронной системой
- большой срок службы электропривода

Общая информация о шине PROFIBUS DP

Для обмена информацией между системами автоматизации и подключенными децентрализованными технологическими устройствами в настоящее время в подавляющем большинстве случаев для связи используются последовательные промышленные шины. В тысячах успешных приложений было однозначно доказано, что при использовании технологии шины по сравнению со стандартным техническим решением при прокладке кабелей и в процессе пусконаладочных работ и эксплуатации можно достичь экономии расходов в размере вплоть до 40%. Для передачи всей важной информации, как напр., входных и выходных данных, параметров и диагностических данных для технологических устройств достаточно только двух проводов. В то время, как в прошлом часто использовались взаимно не несовместимые промышленные шины различных производителей, в настоящее время почти без исключений используются открытые стандартные системы. В результате этого потребитель становится независящим от отдельных поставщиков и он может из широкого предложения изделий выбрать лучшее и с финансовой точки зрения наиболее выгодное изделие. PROFIBUS DP - это ведущая открытая шинная система в Европе, которая успешно используется во всем мире. Область ее назначения включает в себя автоматизацию производства, автоматизацию процессов и автоматизацию зданий. PROFIBUS DP - это международный открытый стандарт промышленной шины, который был стандартизован европейским стандартом EN 50 170. В результате этого капиталовложения изготовителей и потребителей оптимальным образом защищены и полностью гарантирована их независи--мость от производителей.

Основные свойства

PROFIBUS DP определяет технические и функциональные свойства последовательной системы шины, которая дает возможность взаимного соединения в рамках сети распределенных цифровых информационных устройств. Система PROFIBUS DP разрешает главные устройства (Master) и подчи-ненные устройства (Slave). Система PROFIBUS DP рассчитана на быстрый обмен данными на самом низком технологическом уровне.

В данном случае центральные станции управления, как напр., программируемые автоматы (PCL) или промышленные компьютеры (IPC), ведут связь через быстродействующий последовательный интерфейс с децентрализованными технологическими единицами, как напр., входные/выходные устройства, клапаны и приводы. Обмен данными с этими децентрализованными устройствами происходит циклически. Функции связи, которые для этого необходимы, определены основными функциями шины PROFIBUS DP в соответствии с европейским стандартом EN 50 170.

Главные устройства

(Master) или же управляющие станции определяют трафик данных вдоль шины и они могут передавать сообщения без внешнего запроса. Главные устройства (управляющие станции) в рамках протокола PROFIBUS DP также означаются в качестве активных абонентов шины.

Подчиненные устройства,

(Slave), как напр., электроприводы, – это периферийные устройства. Типичными подчиненными единицами являются входные/выходные устройства, клапаны, приводы и измерительные преобразователи. Они не имеют права доступа к шине, т. е. им дозволено согласовать принятые сообщения или по требованию главного устройства передать сообщение. Подчиненные устройства (единицы) также часто принято называть пассивными участниками шины.

Основные функции шины PROFIBUS DP

Управляющая станция (Master) считывает циклически входную инфор-мацию от подчиненных единиц (Slaves) и циклически передает подчиненным единицам выходную информацию. Кроме этой циклической передачи данных о состоянии процесса шина PROFIBUS DP предлагает также исполнительные функции для диагностики и пуска в ход. За процессом передачи данных следят функции мониторинга управляющей станции и подчиненной единицы.

Функциональные возможности

Циклическая передача данных между управляющей станцией (DP Master) и по--дчиненными единицами (DP Slaves).

Динамическая активация и деактивация отдельных подчиненных единиц (DP Slaves).

Проверка конфигурации подчиненных единиц (DP– Slaves).

Синхронизация входов и/или выходов.

Функции защиты

Все сообщения передаются при расстоянии Гамминга HD=4.

Слежение за откликами подчиненных единиц (DP – Slaves) (Watchdog).

Защита доступа для входов/выходов подчиненных единиц (DP – Slaves).

Мониторинг потребительского трафика данных с возможностью установки интервалов мониторинга в управляющей станции (Master).

Возможность установки действия в процессе защиты.

Безопасная работа наших электроприводов гарантирована степенью электрической защиты IP 55, IP 65 и IP 67.

Наши электроприводы стали оснащаться новыми электропическими принципами схемами на базе микропроцессоров для обеспечения повышения точности управления и надежности оборудования при их более простом вводе в эксплуатацию и настройки. Эти схемы, кроме прочего, обеспечивают непрерывные диагностические функции, облегчающие процесс нахождения неисправностей цепей регулирования.

Это - электроприводы марки MODACT CONTROL.

Большое внимание уделяется качеству производства на всех его этапах, так как именно качество является одним из наиболее важных факторов, обеспечивающих успех изделий на рынке.

Поэтому мы решили ввести систему управления качеством во всех областях деятельности общества. Результатом этого было проведение успешного сертификационного аудита и получение сертификата ЕН ИСО 9001 от общества

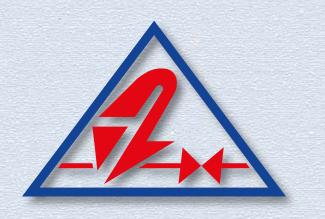
»RW-TŰV Essen« в марте 1995 года. В 2006 году был успешно проведен повторный аудит и срок действия сертификата был продлен до 2009 года.

Таким образом были предприняты первые шаги на пути, целью которого являются надежное изделие и следовательно, довольный заказчик.

Для наших изделий и услуг мы обеспечиваем гарантийный и послегарантийный сервис.

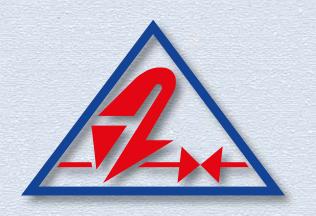
Мы предлагаем следующие виды услуг: монтаж электроприводов у заказчика, регулировка, ремонт, наладка, ревизии, внешний уход.

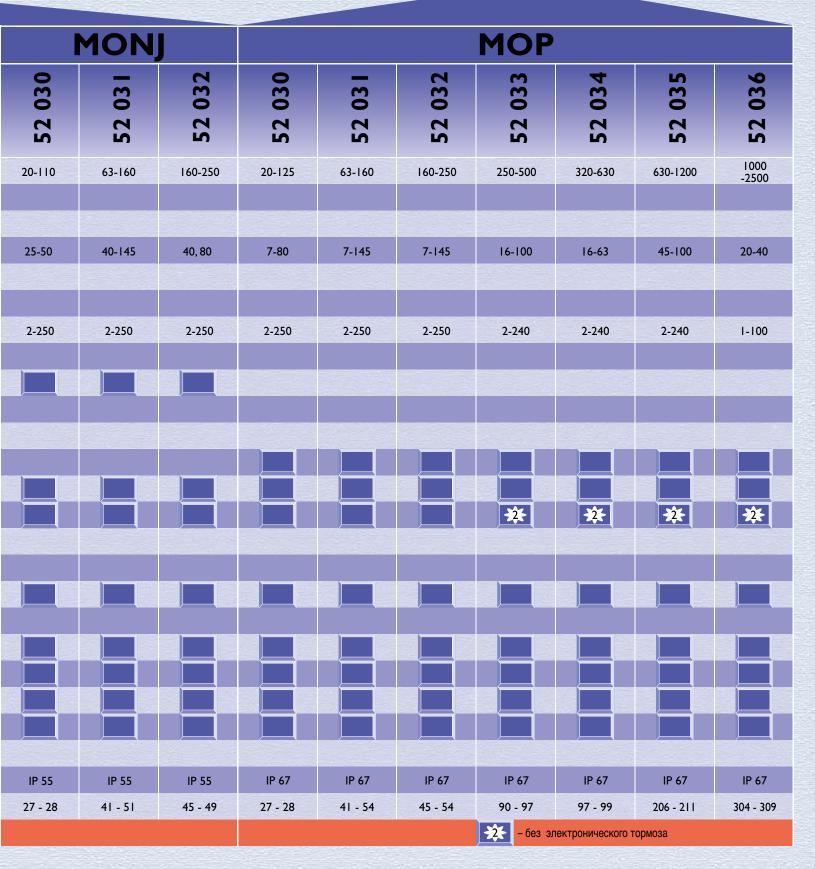
В соответствии с требованиями рынка мы создали сеть сервисных организаций на территории ЧР и СР, в которых работают высококвалифицированные работники, обеспечивающие указанные услуги.



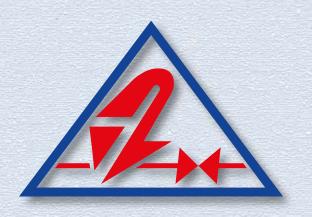
ТИП ЭЛЕКТРОПРИВОДА									-
ТИП ЭЛЕ	КТРОПРИВОДА	KP I	MINI	KP MIDI			MOK		
ТИПОВОЙ	HOMEP	52 997	52 998	52 999	52 325	52 326	52 327	52 328	52 329
Момент выключ	ения [Нм]	30	30	35	16-80	63-125	125-250	250-500	500-1000
Усилие выключе	ения (кН)								
Скорость управл	пения [с/90°]	30-60	30-60	13	10-80	10-80	20-160	20-80	40-160
Ckonooti Bonoo	[MM ⁻¹]								
Скорость перест	[мм/мин]								
	[°]	90	90	320	90	90	90	90	90
Рабочий ход	[06]								
	[MM]								
	1 х 220 В, 50 Гц								
Цопражение пит	24 В, 50 Гц								
Напряжение пит	1 x 110 B, 50 Гц								
	3 х 220/380 В, 50 Гц								
	двухпозиционное								
Регулирование	трехпозиционное								
Регулирование	плавное								
	PROFIBUS								
	датчик сопротивления (R)								
Снятие положен	ия абсолютное								
	датчик тока (I)								
Выключение по	положению								
Выключение по	моменту								
Ручное управлен	ние								
Взрывобезопасн	юе исполнение				*	*	*	*	*
Степень защиты		IP 67	IP 67	IP 67	IP 65, 67	IP 65, 67	IP 65, 67	IP 65, 67	IP 65, 67
Масса в зависимо	ости от исполнения (алюм./чугун) и двигателя [кг]	4	4	2	7,5	13	13-21	26-27	43-45
Примечание							- зона 2, ті	ип защиты »н«	

	M	OK	A			M	OKI	ED		MC	OKP	Ex	MOI	(PEI) Ex
25	26	27	28	29	25	26	27	28	29	20	7	22	20	7	22
2 3	2 3	2 3	2 3	2 3	2 3	2 3	2 3	2	2 3	2 3	2 3	2 3	2 3	2 3	2
57	52	52	52	52	52	52	52	52	52	52	52	52	52	5	52
16-80	63-125	125-250	250-500	500-1000	16-80	63-125	125-250	250-500	500-1000	16-100	63-250	250-600	16-100	63-250	250-600
10.00	10.00	20.140	20.00	40.140	10.00	10.00	20.140	20.00	40.140	10.00	10.00	10.140	10.00	10.00	10.140
10-80	10-80	20-160	20-80	40-160	10-80	10-80	20-160	20-80	40-160	10-80	10-80	10-160	10-80	10-80	10-160
90	90	90	90	90	90	90	90	90	90	90-160	90-160	90-160	90-160	90-160	90-160
IP 45 47	IP 65 67	IP 65 67	IP 65 67	IP 65 67	IP 65 47	IP 65 67	IP 65 67	IP 65 67	IP 65, 67	IP 67	IP 67	IP 67	IP 67	IP 67	IP 67
7,5	13	Contraction of the Contraction o	26 - 27		7,5	13		26 - 27		10	18,5	31	9,7	18,5	31
7,5	.,	13 . 21	20 - 27	15 - 15	7,5	.5	13 - 21	20 - 21	15 - 15		10,5	J1	,,,	10,5	J,
						-									

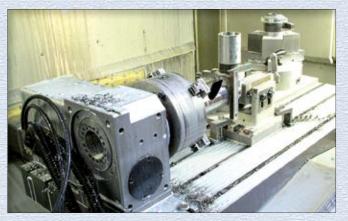




тип эле	КТРОПРИВОДА	MOP	MOPED				MON			
ТИПОВОЙ	HOMEP	52 039	52 039	52 030	52 031	52 032	52 033	52 034	52 035	52 036
Момент выключ	ения [Нм]	10-60	10-60	20-200	63-160	160-400	250-500	320-1000	630-2000	1000-4000
Усилие выключ	эния [кН]									
Скорость управ	пения [с/90°]									
CKODOOTI HODOO	[MM ⁻¹]	9-40	9-40	7-80	7-145	7-145	16-100	16-63	45-100	20-40
Скорость перес	[мм/мин]									
	[°]									
Рабочий ход	[06]	1,5-38	1,5-2880	2-250	2-250	2-250	2-240	2-240	2-240	1-100
	[MM]									
	1 х 220 В, 50 Гц									
Напражацие пил	24 В, 50 Гц									
Напряжение пит	1 x 110 B, 50 Гц									
	3 х 220/380 В, 50 Гц									
	двухпозиционное									
Регулирование	трехпозиционное						→2 +	→2	→2	₹
геі улирование	плавное									
	PROFIBUS									
	датчик сопротивления (R)									
Снятие положен	ия абсолютное									
	датчик тока (I)									
Выключение по	положению									
Выключение по	моменту									
Ручное управле	ние									
Взрывобезопас	ное исполнение									
Степень защить		IP 67	IP 67	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55
Масса в зависимо	ости от исполнения (алюм./чугун) и двигателя [кг]	17	17	27 - 29	41- 54	45 - 58	90 - 97	97 - 109	211 - 217	304 - 315
Примечание							-2 -	без электроничес	кого тормоза	



		MONED																
ТИП ЭЛЕКТРОПР	ИВОДА			MC	NE	ED			MC	DNE	EDJ			M	OPI	ED		
ТИПОВОЙ НОМЕР		52 030	52 031	52 032	52 033	52 034	52 035	52 036	52 030	52 031	52 032	52 030	52 031	52 032	52 033	52 034	52 035	52 036
Момент выключения	[Нм]	20-200	63-160	160-400	250-500	320-1000	630 -2000	1000 -4000	20-110	63-160	160-250	20-125	63-160	160-250	250-500	320-630	630-1200	1000 -2500
Усилие выключения	[kH]																	
Скорость управления	[c/90°]																	
0	[MM ⁻¹]	7-80	7-145	7-145	16-100	16-63	45-100	20-40	25-50	40-145	40, 80	7-80	7-145	7-145	16-100	16-63	45-100	20-40
Скорость перестановки	[мм/мин]																	
	[°]																	
Рабочий ход	[06]	2-2010	2-1420	2-1420	2-1090	2-1090	2-1090	2-470	2-2010	2-1420	2-1420	2-2010	2-1420	2-1420	2-1090	2-1090	2-1090	2-470
Ua-payayaa Buzaliid																		
Напряжение питания	1 х 110 В, 50 Гц														You is			
	3 х 220/380 В, 50 Гц																	
	двухпозиционное																	
Ропулиморацио	трехпозиционное				*2 *	*2 *	→2 €	-2 -							**	→2 +	→2 €	→2 €
Регулирование	плавное																	
	PROFIBUS																	
	датчик сопротивления (R)																	
Снятие положения	абсолютное																	
	датчик тока (I)																	
Выключение по положению																		
Выключение по моменту																		
Ручное управление																		
Взрывобезопасное исполнение																		
Степень защиты	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 67	IP 67	IP 67	IP 67	IP 67	IP 67	IP 67	
Масса в зависимости от исполнен	Масса в зависимости от исполнения (алюм./чугун) и двигателя [кг]				90 - 97	97 - 109	211 - 217	304 - 315	27 - 28	41 - 51	45 - 49	27 - 28	41 - 54	45 - 54	90 - 97	97 - 99	206 - 211	304 - 309
Примечание						онического	о тормоза							2	– без эле	ктроничес	ского тормо	за

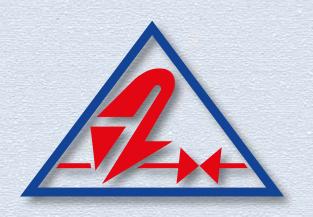

										Ì									
	M	0	E	Ex		ľ	1 C	E	D E	EE	X			MO	AC	\		MOA	MOA
20	21	22	23	24	25	20	21	22	23	24	25	020	021	022	24	25	26	27	029
2 1	2 1	7	2 1	2	2 1	2 1	2 1	2 1	2 1	2 1	2	7	7	7	2 0	2 0	2 0	2 0	7
2	7	140	250	220	420	Ŋ	7	L	250	220	430	Ŋ	L)	L	L	430	1250	Ŋ	Ю
20-125	63-160	-250	-500	-630	-1100	20-125	63-160	160 -250	250 -500	-630	-1100	20-63	63-160	160 -250	-630	630 -1250	1250 -2000	10-20	10-30
11-40	16-125	10-80	16-100	16-63	30-100	11-40	16-125	10-80	16-100	16-63	30-100	9-40	9-100	9-80	16-100	45-63	32	3	9-40
2-250 (2-620)	2-250 (2-620)	2-250 (2-620)	2-240 (2-470)	2-240 (2-470)	2-240 (2-470)	2-1980	2-1400	2-1400	2-1080	2-1080	2-1080	2-250	2-250	2-250	2-240	2-240	1-100	1-7	1,5-38
			253																
																	~		
IP 55, 65	IP 55, 65	IP 55, 65	IP 55, 65	IP 55, 65	IP 55, 65	IP 55, 65	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 67	IP 67					
	57 - 80					47 - 49							65-68			210	318	8,2	17

червячный редуктор		планетарный
--------------------	--	-------------

планетарныи	пелуктоп
Tistario Tapriblis	Podylkiop

		7																		Ĭ
ТИП ЭЛЕКТРОПР	ИВОДА	M	OA	\ C	C	M	OA	\ C	C	MOA OC	M	1P	R			M	1PS	5		
ТИПОВОЙ НОМЕР		52 070	52 071	52 072	52 074	52 070	52 071	52 072	52 074	52 079	52 221	52 222	52 223	52 260	52 261	52 262	52 263	52 264	52 265	52 266
Момент выключения	[Нм]	20-63	63-160	125-250	250-630	20-63	63-160	125-250	250-630	10-30	63-320	250 -1000	1000 -4000	20 -125	100 -160	160 -320	320 -630	630 -1250	1250 -2000	2500 -4000
Усилие выключения	[kH]																			
Скорость управления	[c/90°]										11-46	10-55	50-195	8-63	16-120	16-120	16-120	16-120	45	45
Cychooti Hanastauanyu	[MM ⁻¹]	16-100	40-100	40-100	40-120	16-40	25-100	25-70	33-95	9-40										
Скорость перестановки	[мм/мин]																			
										160	160	160	160	160	160	160	160	160	160	
Рабочий ход	2-250	2-250	2-250	2-250	2-250	2-250	2-250	2-240	1,5-38											
Напряжение питания	24 В, 50 Гц																			
паприжение питания	1 х 110 В, 50 Гц																			
	3 х 220/380 В, 50 Гц																			
	двухпозиционное																			
Регулирование	трехпозиционное																			
геі улирование	плавное																			
	PROFIBUS																			
	датчик сопротивления (R)																			
Снятие положения	абсолютное																			
	датчик тока (I)																			
Выключение по положению																				
Выключение по моменту																				
Ручное управление																				
Взрывобезопасное исполнение																				
Степень защиты			IP 55					IP 55	IP 55	IP 67	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55	IP 55
Масса в зависимости от исполнен	Масса в зависимости от исполнения (алюм./чугун) и двигателя [кг]			94-108	152 -212	30-34	64	64	93-111	19,4-21,6	62-67	104	282	26	70	70	120	120	267	267
Примечание																				

		M	PS	P					MF	PSI	ED				1	MP	SP	EC)	
260	261	262	263	264	265	266	260	261	262	263	264	265	266	260	261	262	263	264	265	266
52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	52	5 2	5 2
20 -125	100 -160	160 -320	320 -630	630 -1250	1250 -2000	2500 -4000	20 -125	100 -160	160 -320	320 -630	630 -1250	1250 -2000	2500 -4000	20 -125	100 -160	160 -320	320 -630	630 -1250	1250 -2000	2500 -4000
8-63	16-120	16-120	16-120	16-120	45	45	8-63	16-120	16-120	16-120	16-120	45	45	8-63	16-120	16-120	16-120	16-120	45	45
160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160	160
																			=	
IP 67 26	IP 67 70	IP 67 70	IP 67	IP 67	IP 67 267	IP 67 267	IP 55 26	IP 55 70	IP 55 70	IP 55	IP 55	IP 55 267	IP 55 267	IP 67 26	IP 67 70	IP 67 70	IP 67	IP 67	IP 67 267	IP 67 267
20	70	,0	120	120	207	207	20	, 0	, 0	120	120	207	207	20	, 0	, 0	120	120	207	207



ТИП ЭЛЕ	КТРОПРИВОДА	MTP	MTPED	М٦	ΓN	MTI	NED	M	ГР	MTI	PED
ТИПОВОЙ	HOMEP	52 441	52 441	52 442	52 443	52 442	52 443	52 442	52 443	52 442	52 443
Момент выключ	ения [Нм]									
Усилие выключ	ения	kH] 5-25	5-25	11,5-25	25-63	11,5-25	25-63	11,5-25	25-63	11,5-25	25-63
Скорость управ.	ления [с/	90°]									
C	[M	м ⁻¹]									
Скорость перес	TAHOBKU [MM/N	ин] 45-200	45-200	27-125	45-155	27-125	45-155	27-125	45-155	27-125	45-155
		[°]									
Рабочий ход		[об]									
	I	мм] 10-100	10-100	10-100	20-120	10-100	20-120	10-100	20-120	10-100	20-120
	1 x 220 B, 5) Гц									
Цопражение пит	24 B, 50) Гц									
Напряжение пит	1 x 110 B, 5) Гц									
	3 x 220/380 B, 5	ГЦ									
	двухпозицион	ное									
Регулирование	трехпозицион	ное									
гетулирование	пла	вное									
	PROFIL	BUS									
	датчик сопротивления	(R)									
Снятие положен	ния абсолютное										
	датчик тока	(1)									
Выключение по	положению										
Выключение по	моменту										
Ручное управлен	ние										
Взрывобезопасн	ное исполнение										
Степень защиты		IP 67	IP 67	IP 55	IP 55	IP 55	IP 55	IP 67	IP 67	IP 67	IP 67
Масса в зависимо	ости от исполнения (алюм./чугун) и двигателя	[кг] 22	22	33 - 45	60 - 81	33 - 45	60 - 81	33 - 45	60 - 78	33 - 45	60 - 78
Примечание											

АРМАТУРЫ, РЕДУКТОРЫ

Область применения наших электроприводов расширяется благодаря соединения многооборотных электроприводов с редукторами фирмы »MASTERGEAR«.

В случае, если момент выключения электропривода уже не является достаточным, такое решение позволяет увеличить момент выключения электропривода вплоть до 250 000 Нм как в случае однооборотных арматур (клапаны, шаровые краны), в случае многооборотных арматур (запорные задвишки, вентили до 16,000 Нм). Такой же диапазон значений момента можно обеспечить

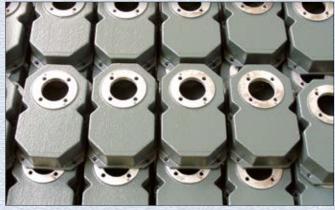
с помощью редукторов, рассчитанных только на управление с помощью маховика.

Благодаря большому количеству исполнений, жесткой конструкции и высокому качаеству обработки, редукторы MASTERGEAR удовлетворяют самым тржелым требованиям эксплуатации. Благодаря антикоррозионному исполнению чистых металических поверхностей, поверхностной обработке с помощью эпоксидного лака и использованию многоманжетных уплотнений, редукторы серии »МF« герметические вплоть до IP67 и отличаются исключительной стойкостью к воздействию

окружающей среды. Аксиальные подшипники с игольчатыми роликами в комбинации с червяком и валом червяка всех моделей обеспечивают достижение максимального коэффициента передачи и оптимального к. п. д.

По требованиям заказчика будет предложено оптимальное решение размеров и типа арматуры с точки зрения эксплуатации и цены.

Комплект электропривода будет нами собран и отрегулирован в соответствии с требуемыми параметрами, в результате чего исключаются комплектация и настройка в тяжелях условиях строек и т. п.



ЭЛЕКТРОННЫЙ ДЕТЕКТОР И РЕГУЛЯТОР ПОЛОЖЕНИЯ ЭЛЕКТРОПРИВОДОВ MODACT

DMS2 – это электронная система бесконтактного магнитного детектирования положения и момента электроприводов

Основные свойства DMS2:

- Гарантируемый большой срок службы компонентов детекторов, у кото-рых не происходит механический износ
- Использование абсолютных детекто--ров положения без необходимости резервного питания от батарей
- Комплексное управление работой электроприводов путем двух– или трехпозиционного регулирования или присоединение к промышленной шине Profibus
- Наглядная сигнализация рабочих и сервисных данных с помощью знакового дисплея на жидких кристаллах LCD 2x12 знаков
- Автодиагностика сообщений об ошибке на дисплее LCD, запоминание последних отказов и количества возникновений отдельных отказов
- Установка параметров с помощью программы персонального компьютера или с помощью системы местного управления

Описание компонентов системы

Основное оснащение:

Блок управления является основной составной частью системы DMS2 и содержит:

- Микроконтроллер
- Детекторы положения
- 2 светодиода сигнализации
- Разъемы для присоединения детектора момента, платы реле и 2П входов, платы источника питания, адаптера связи, дисплея на жидких кристаллах LCD и системы местного управления

Блок момента обеспечивает сни--мание момента кручения с помощью бесконтактного детектора.

Блок источника питания содержит:

- 2 реле для управления электродвигателем
- реле Ready имеет переключающий контакт, подключенный к клеммнику
- реле сигнализации 1–4 имеют один полюс контакта включения, подключенный к клеммнику. Остальные полюсы замыкающих контактов реле 1–4 взаимно соединены и подключены к зажиму СОМ

Блок дает возможность присоединения отопительного элемента и его управ--ления с помощью термостата.

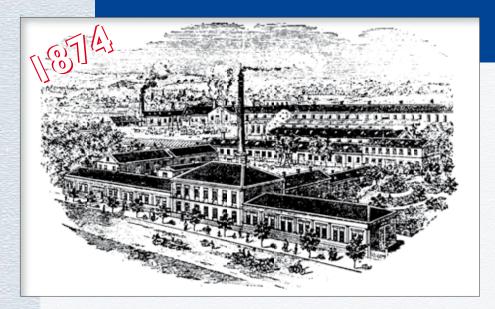
Блок управляет силовыми выключате--лями электродвигателя (контакторы или бесконтактное включение).

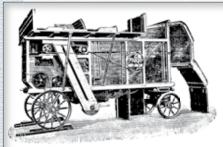
К блоку можно подключить динамический тормоз.

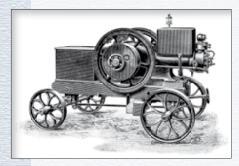
Блок дисплея – двухстрочный дисплей 2x12 цифроаналоговых знаков.

Блок кнопок – детекторы кнопок »открывай«, »закрывай«, »стоп«, и переключателя вращения »местное, дистанционное, стоп«

Оснащение по выбору (в электроприводе должен использоваться один из следующих блоков):


Блок двух – или трехпозиционного управления – дает возможность управления электроприводом при достижении положений *»открыто«* и *»закрыто«* или с помощью аналогового сигнала 0(4) – 20 мА.


Блок присоединения Profibus – дает возможность управлять электроприводом с помощью промышленной шины Profibus.


Блок электронного управления DMS2 контролирует последовательность фаз и исчезновение напряжения фаз.

История машиностроительного производства в г. Печки началась в 1874 м году, когда братья Йоузы основали фирму по производству сельскохозяйственных машин и кузнечных изделий. Фирма постепенно расширялась и в ее производственную программу входили зубчатые колеса, шарикоподшипники, фрезерные, сверлильные и строгальные станки, бензиновые и дизельные двигатели, а также тракторы.

После второй мировой войны производственная программа изменилась. Начиная с 1953 года она ориентировалась на системы регулирования, измерительные приборы, электрические распределительные устройства и электроприводы, которые в течение почти пяти десятилетий стали нашими традиционными изделиями.

В результате реализации приватизационного проекта на 1-е мая 1992 г. было создано самостоятельное акционерное общество »ЗПА Печки«, а.о.

В настоящее время в нашем подразделении I выпускаются электроприводы марки МОDACT, предназначенные для управления самыми различными типами арматур, к которым

относятся запорные задвижки, клапаны, заслонки или шаровые клапаны, тоже предназначенные для работы и в среде с опасностью взрива газов и паров.

Большое количество исполнений дает широкие возможности использования наших электроприводов в цепях управления и регулирования технологическими процессами.

В производственную программу нашей фирмы входят электроприводы вращения одно- и многооборотные, предназначенные для ппямого монтажа на арматуре, а также рычажные электроприводы с моментом выключения в пределах от 2,5 до 4000 Нм и линейные электроприводы, обеспечивающие осевые условиях в пределах от 11,5 до 63 кН.

Нашими специальными изделиями являются электроприводы типа МОА и МОА ОС, предназначенные для эксплуатации в экстремальных условия атомных электростанций.

Ьлагодаря блочной конструкции электроприводов MODACT удалось упростить и унифицировать ряд элементов электроприводов различного типа и достичь их большого срока службы и высокой эксплуатационной надежности. Последнее является результатом нескольких уникальных решений, возникших в собственном исследовательском и конструкторском отделе. Речь идет, например, о решении планетарного редуктора, допускающего ручное управление и во время году электродвигателя, о системе блокировки моментных выключтелей, о малом гистерезисе и нелинейности датчиков положения, высокой точности установки выключателей положения и момента.

ОФИЦИАЛЬНЫЕ ПРЕДСТАВИТЕЛИ

факс: +420 321 785 165, +420 321 785 167

Компания ООО «Marvel - Moscow»

e-mail: zpa@zpa-pecky.cz

официальный представитель в России и Украине

Торговый отдел в РФ: ул. Юлиуса Фучика 17/19, Москва Контактное лицо: Сабиров Руслан Ибрагимович

e-mail: marvel@marvel-moscow.ru тел.: (499) 251-10-72 www.marvel-moscow.ru мобиль: (963) 684-94-64

официальный представитель в Беларуси

Торговый отдел в РБ: Ул. Лазо, 3 пом. 3, Минск, Республика Беларусь Контактное лицо: Шкилюк Юрий Михайлович

e-mail: vodangrupp@mail.ru тел.: (+375) 17 360-27-47 www.задвижка.бел мобиль: (+375) 29 160-27-47

официальный представитель в Украине

Контактное лицо: Проскуров Алексей Юрьевич

49083, Украина Тел./факс: +38 (056) 372-89-49 Днепропетровск 372-89-59, 372-89-69 пр. им . "Газеты "Правда" E-mail: pts@ptsintez.dp.ua 29 к. 104 www.ptsintez.dp.ua

